Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cell Death Differ ; 31(2): 170-187, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38062245

RESUMO

The Sonic Hedgehog (SHH) pathway is crucial regulator of embryonic development and stemness. Its alteration leads to medulloblastoma (MB), the most common malignant pediatric brain tumor. The SHH-MB subgroup is the best genetically characterized, however the molecular mechanisms responsible for its pathogenesis are not fully understood and therapeutic benefits are still limited. Here, we show that the pro-oncogenic stemness regulator Spalt-like transcriptional factor 4 (SALL4) is re-expressed in mouse SHH-MB models, and its high levels correlate with worse overall survival in SHH-MB patients. Proteomic analysis revealed that SALL4 interacts with REN/KCTD11 (here REN), a substrate receptor subunit of the Cullin3-RING ubiquitin ligase complex (CRL3REN) and a tumor suppressor lost in ~30% of human SHH-MBs. We demonstrate that CRL3REN induces polyubiquitylation and degradation of wild type SALL4, but not of a SALL4 mutant lacking zinc finger cluster 1 domain (ΔZFC1). Interestingly, SALL4 binds GLI1 and cooperates with HDAC1 to potentiate GLI1 deacetylation and transcriptional activity. Notably, inhibition of SALL4 suppresses SHH-MB growth both in murine and patient-derived xenograft models. Our findings identify SALL4 as a CRL3REN substrate and a promising therapeutic target in SHH-dependent cancers.


Assuntos
Neoplasias Encefálicas , Neoplasias Cerebelares , Meduloblastoma , Animais , Humanos , Camundongos , Proteínas de Ciclo Celular , Neoplasias Cerebelares/genética , Neoplasias Cerebelares/patologia , Proteínas Hedgehog/metabolismo , Meduloblastoma/genética , Proteômica , Fatores de Transcrição/genética , Transferases , Proteína GLI1 em Dedos de Zinco/genética
2.
Cancer Lett ; 559: 216120, 2023 04 10.
Artigo em Inglês | MEDLINE | ID: mdl-36893894

RESUMO

A key mechanism driving colorectal cancer (CRC) development is the upregulation of MYC and its targets, including ornithine decarboxylase (ODC), a master regulator of polyamine metabolism. Elevated polyamines promote tumorigenesis in part by activating DHPS-mediated hypusination of the translation factor eIF5A, thereby inducing MYC biosynthesis. Thus, MYC, ODC and eIF5A orchestrate a positive feedback loop that represents an attractive therapeutic target for CRC therapy. Here we show that combined inhibition of ODC and eIF5A induces a synergistic antitumor response in CRC cells, leading to MYC suppression. We found that genes of the polyamine biosynthesis and hypusination pathways are significantly upregulated in colorectal cancer patients and that inhibition of ODC or DHPS alone limits CRC cell proliferation through a cytostatic mechanism, while combined ODC and DHPS/eIF5A blockade induces a synergistic inhibition, accompanied to apoptotic cell death in vitro and in mouse models of CRC and FAP. Mechanistically, we found that this dual treatment causes complete inhibition of MYC biosynthesis in a bimodal fashion, by preventing translational elongation and initiation. Together, these data illustrate a novel strategy for CRC treatment, based on the combined suppression of ODC and eIF5A, which holds promise for the treatment of CRC.


Assuntos
Neoplasias Colorretais , Fatores de Iniciação de Peptídeos , Poliaminas , Proteínas Proto-Oncogênicas c-myc , Animais , Camundongos , Apoptose , Proliferação de Células , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/genética , Ornitina Descarboxilase/genética , Ornitina Descarboxilase/metabolismo , Ornitina Descarboxilase/farmacologia , Poliaminas/metabolismo , Humanos , Fatores de Iniciação de Peptídeos/genética , Fatores de Iniciação de Peptídeos/metabolismo , Proteínas Proto-Oncogênicas c-myc/metabolismo
3.
Front Cell Dev Biol ; 10: 814165, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35186929

RESUMO

Contrasting evidence is present regarding the contribution of stem/progenitor cell populations to pancreatic regeneration in diabetes. Interestingly, a cell compartment with stem/progenitor cell features has been identified in the pancreatic duct glands (PDGs). The aims of the present study were to evaluate pancreatic islet injury and regeneration, and the participation of the PDG compartment in type 2 diabetic mellitus (T2DM) and in an experimental model of diabetes. Human pancreata were obtained from normal (N = 5) or T2DM (N = 10) cadaveric organ donors. Experimental diabetes was generated in mice by intraperitoneal injection of 150 mg/kg of streptozotocin (STZ, N = 10); N = 10 STZ mice also received daily intraperitoneal injections of 100 µg of human recombinant PDX1 peptide (STZ + PDX1). Samples were examined by immunohistochemistry/immunofluorescence or RT-qPCR. Serum glucose and c-peptide levels were measured in mice. Islets in T2DM patients showed ß-cell loss, signs of injury and proliferation, and a higher proportion of central islets. PDGs in T2DM patients had a higher percentage of proliferating and insulin+ or glucagon+ cells compared to controls; pancreatic islets could be observed within pancreatic duct walls of T2DM patients. STZ mice were characterized by reduced islet area compared to controls. PDX1 treatment increased islet area and the percentage of central islets compared to untreated STZ mice but did not revert diabetes. In conclusion, T2DM patients show signs of pancreatic islet regeneration and involvement of the PDG niche. PDX1 administration could support increased endocrine pancreatic regeneration in STZ. These findings contribute to defining the role and participation of stem/progenitor cell compartments within the pancreas.

4.
Cell Death Dis ; 11(12): 1045, 2020 12 10.
Artigo em Inglês | MEDLINE | ID: mdl-33303756

RESUMO

Eukaryotic Translation Initiation Factor 5A (EIF5A) is a translation factor regulated by hypusination, a unique posttranslational modification catalyzed by deoxyhypusine synthetase (DHPS) and deoxyhypusine hydroxylase (DOHH) starting from the polyamine spermidine. Emerging data are showing that hypusinated EIF5A regulates key cellular processes such as autophagy, senescence, polyamine homeostasis, energy metabolism, and plays a role in cancer. However, the effects of EIF5A inhibition in preclinical cancer models, the mechanism of action, and specific translational targets are still poorly understood. We show here that hypusinated EIF5A promotes growth of colorectal cancer (CRC) cells by directly regulating MYC biosynthesis at specific pausing motifs. Inhibition of EIF5A hypusination with the DHPS inhibitor GC7 or through lentiviral-mediated knockdown of DHPS or EIF5A reduces the growth of various CRC cells. Multiplex gene expression analysis reveals that inhibition of hypusination impairs the expression of transcripts regulated by MYC, suggesting the involvement of this oncogene in the observed effect. Indeed, we demonstrate that EIF5A regulates MYC elongation without affecting its mRNA content or protein stability, by alleviating ribosome stalling at five distinct pausing motifs in MYC CDS. Of note, we show that blockade of the hypusination axis elicits a remarkable growth inhibitory effect in preclinical models of CRC and significantly reduces the size of polyps in APCMin/+ mice, a model of human familial adenomatous polyposis (FAP). Together, these data illustrate an unprecedented mechanism, whereby the tumor-promoting properties of hypusinated EIF5A are linked to its ability to regulate MYC elongation and provide a rationale for the use of DHPS/EIF5A inhibitors in CRC therapy.


Assuntos
Neoplasias Colorretais/metabolismo , Neoplasias Colorretais/patologia , Lisina/análogos & derivados , Fatores de Iniciação de Peptídeos/metabolismo , Proteínas Proto-Oncogênicas c-myc/metabolismo , Proteínas de Ligação a RNA/metabolismo , Polipose Adenomatosa do Colo/genética , Polipose Adenomatosa do Colo/patologia , Motivos de Aminoácidos , Sequência de Aminoácidos , Animais , Linhagem Celular Tumoral , Proliferação de Células/genética , Neoplasias Colorretais/genética , Regulação para Baixo , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Humanos , Lisina/metabolismo , Camundongos Nus , Fases de Leitura Aberta/genética , Oxirredutases atuantes sobre Doadores de Grupo CH-NH/antagonistas & inibidores , Oxirredutases atuantes sobre Doadores de Grupo CH-NH/metabolismo , Fatores de Iniciação de Peptídeos/química , Peptídeos/metabolismo , Poliaminas/metabolismo , Biossíntese de Proteínas , Proteínas de Ligação a RNA/química
5.
ChemMedChem ; 15(23): 2264-2268, 2020 12 03.
Artigo em Inglês | MEDLINE | ID: mdl-32946182

RESUMO

The Wnt/ß-catenin pathway is often found deregulated in cancer. The aberrant accumulation of ß-catenin in the cell nucleus results in the development of various malignancies. Specific drugs against this signaling pathway for clinical treatments have not been approved yet. Herein we report inhibitors of ß-catenin signaling of potential therapeutic value as anticancer agents. Ethyl 4-((4-(trifluoromethyl)phenyl)sulfonamido)benzoate (compound 14) inhibits the effect on Wnt reporter with an IC50 value of 7.0 µM, significantly reduces c-MYC levels, inhibits HCT116 colon cancer cell growth (IC50 20.2 µM), does not violate Lipinski and Veber rules, and shows predicted Caco-2 and MDCK cell permeability Papp >500 nm s-1 . Compound 14 seems to have potential for the development of new anticancer therapies.


Assuntos
Antineoplásicos/farmacologia , Proteínas Proto-Oncogênicas c-myc/antagonistas & inibidores , Sulfonamidas/farmacologia , beta Catenina/antagonistas & inibidores , Antineoplásicos/síntese química , Antineoplásicos/química , Proliferação de Células/efeitos dos fármacos , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Estrutura Molecular , Proteínas Proto-Oncogênicas c-myc/metabolismo , Sulfonamidas/síntese química , Sulfonamidas/química , Via de Sinalização Wnt/efeitos dos fármacos , beta Catenina/metabolismo
6.
Cell Rep ; 30(6): 1735-1752.e7, 2020 02 11.
Artigo em Inglês | MEDLINE | ID: mdl-32049007

RESUMO

The antidiabetic drug phenformin displays potent anticancer activity in different tumors, but its mechanism of action remains elusive. Using Shh medulloblastoma as model, we show here that at clinically relevant concentrations, phenformin elicits a significant therapeutic effect through a redox-dependent but complex I-independent mechanism. Phenformin inhibits mitochondrial glycerophosphate dehydrogenase (mGPD), a component of the glycerophosphate shuttle, and causes elevations of intracellular NADH content. Inhibition of mGPD mimics phenformin action and promotes an association between corepressor CtBP2 and Gli1, thereby inhibiting Hh transcriptional output and tumor growth. Because ablation of CtBP2 abrogates the therapeutic effect of phenformin in mice, these data illustrate a biguanide-mediated redox/corepressor interplay, which may represent a relevant target for tumor therapy.


Assuntos
Antineoplásicos/uso terapêutico , Proteínas Correpressoras/efeitos dos fármacos , Proteínas Hedgehog/efeitos dos fármacos , Hipoglicemiantes/uso terapêutico , Neoplasias/tratamento farmacológico , Fenformin/uso terapêutico , Animais , Antineoplásicos/farmacologia , Humanos , Hipoglicemiantes/farmacologia , Camundongos , Fenformin/farmacologia
7.
Oncogenesis ; 8(11): 64, 2019 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-31685809

RESUMO

Medulloblastoma (MB) is the most common malignant childhood brain tumor. About 30% of all MBs belong to the I molecular subgroup, characterized by constitutive activation of the Sonic Hedgehog (Hh) pathway. The Hh pathway is involved in several fundamental processes during embryogenesis and in adult life and its deregulation may lead to cerebellar tumorigenesis. Indeed, Hh activity must be maintained via a complex network of activating and repressor signals. One of these repressor signals is KCASH2, belonging to the KCASH family of protein, which acts as negative regulators of the Hedgehog signaling pathway during cerebellar development and differentiation. KCASH2 leads HDAC1 to degradation, allowing hyperacetylation and inhibition of transcriptional activity of Gli1, the main effector of the Hh pathway. In turn, the KCASH2 loss leads to persistent Hh activity and eventually tumorigenesis. In order to better characterize the physiologic role and modulation mechanisms of KCASH2, we have searched through a proteomic approach for new KCASH2 interactors, identifying Potassium Channel Tetramerization Domain Containing 15 (KCTD15). KCTD15 is able to directly interact with KCASH2, through its BTB/POZ domain. This interaction leads to increase KCASH2 stability which implies a reduction of the Hh pathway activity and a reduction of Hh-dependent MB cells proliferation. Here we report the identification of KCTD15 as a novel player in the complex network of regulatory proteins, which modulate Hh pathway, this could be a promising new target for therapeutic approach against MB.

8.
Cancers (Basel) ; 11(10)2019 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-31601026

RESUMO

: Pharmacological Hedgehog (Hh) pathway inhibition has emerged as a valuable anticancer strategy. A number of small molecules able to block the pathway at the upstream receptor Smoothened (Smo) or the downstream effector glioma-associated oncogene 1 (Gli1) has been designed and developed. In a recent study, we exploited the high versatility of the natural isoflavone scaffold for targeting the Hh signaling pathway at multiple levels showing that the simultaneous targeting of Smo and Gli1 provided synergistic Hh pathway inhibition stronger than single administration. This approach seems to effectively overcome the drug resistance, particularly at the level of Smo. Here, we combined the pharmacophores targeting Smo and Gli1 into a single and individual isoflavone, compound 22, which inhibits the Hh pathway at both upstream and downstream level. We demonstrate that this multitarget agent suppresses medulloblastoma growth in vitro and in vivo through antagonism of Smo and Gli1, which is a novel mechanism of action in Hh inhibition.

9.
Int J Oncol ; 54(2): 505-514, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30483764

RESUMO

The aberrant activation of hedgehog (HH) signaling is a leading cause of the development of medulloblastoma, a pediatric tumor of the cerebellum. The FDA­approved HH inhibitor, Vismodegib, which targets the transmembrane transducer SMO, has shown limited efficacy in patients with medulloblastoma, due to compensatory mechanisms that maintain an active HH­GLI signaling status. Thus, the identification of novel actionable mechanisms, directly affecting the activity of the HH­regulated GLI transcription factors is an important goal for these malignancies. In this study, using gene expression and reporter assays, combined with biochemical and cellular analyses, we demonstrate that mitogen­activated kinase kinase kinase 1 (MEKK1), the most upstream kinase of the mitogen­activated protein kinase (MAPK) phosphorylation modules, suppresses HH signaling by associating and phosphorylating GLI1, the most potent HH­regulated transcription factor. Phosphorylation occurred at multiple residues in the C­terminal region of GLI1 and was followed by an increased association with the cytoplasmic proteins 14­3­3. Of note, the enforced expression of MEKK1 or the exposure of medulloblastoma cells to the MEKK1 activator, Nocodazole, resulted in a marked inhibitory effect on GLI1 activity and tumor cell proliferation and viability. Taken together, the results of this study shed light on a novel regulatory mechanism of HH signaling, with potentially relevant implications in cancer therapy.


Assuntos
Proteínas Hedgehog/genética , MAP Quinase Quinase Quinase 1/genética , Meduloblastoma/genética , Proteína GLI1 em Dedos de Zinco/genética , Anilidas/administração & dosagem , Animais , Proliferação de Células/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Meduloblastoma/tratamento farmacológico , Meduloblastoma/patologia , Camundongos , Células NIH 3T3 , Fosforilação/efeitos dos fármacos , Piridinas/administração & dosagem , RNA Mensageiro/genética , Transdução de Sinais/efeitos dos fármacos , Fatores de Transcrição/genética
10.
Oncogenesis ; 7(5): 42, 2018 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-29795369

RESUMO

Notch dysregulation has been implicated in numerous tumors, including triple-negative breast cancer (TNBC), which is the breast cancer subtype with the worst clinical outcome. However, the importance of individual receptors in TNBC and their specific mechanism of action remain to be elucidated, even if recent findings suggested a specific role of activated-Notch3 in a subset of TNBCs. Epidermal growth factor receptor (EGFR) is overexpressed in TNBCs but the use of anti-EGFR agents (including tyrosine kinase inhibitors, TKIs) has not been approved for the treatment of these patients, as clinical trials have shown disappointing results. Resistance to EGFR blockers is commonly reported. Here we show that Notch3-specific inhibition increases TNBC sensitivity to the TKI-gefitinib in TNBC-resistant cells. Mechanistically, we demonstrate that Notch3 is able to regulate the activated EGFR membrane localization into lipid rafts microdomains, as Notch3 inhibition, such as rafts depletion, induces the EGFR internalization and its intracellular arrest, without involving receptor degradation. Interestingly, these events are associated with the EGFR tyrosine dephosphorylation at Y1173 residue (but not at Y1068) by the protein tyrosine phosphatase H1 (PTPH1), thus suggesting its possible involvement in the observed Notch3-dependent TNBC sensitivity response to gefitinib. Consistent with this notion, a nuclear localization defect of phospho-EGFR is observed after combined blockade of EGFR and Notch3, which results in a decreased TNBC cell survival. Notably, we observed a significant correlation between EGFR and NOTCH3 expression levels by in silico gene expression and immunohistochemical analysis of human TNBC primary samples. Our findings strongly suggest that combined therapies of TKI-gefitinib with Notch3-specific suppression may be exploited as a drug combination advantage in TNBC treatment.

11.
Nat Commun ; 9(1): 976, 2018 03 07.
Artigo em Inglês | MEDLINE | ID: mdl-29515120

RESUMO

Suppressor of Fused (SuFu), a tumour suppressor mutated in medulloblastoma, is a central player of Hh signalling, a pathway crucial for development and deregulated in cancer. Although the control of Gli transcription factors by SuFu is critical in Hh signalling, our understanding of the mechanism regulating this key event remains limited. Here, we show that the Itch/ß-arrestin2 complex binds SuFu and induces its Lys63-linked polyubiquitylation without affecting its stability. This process increases the association of SuFu with Gli3, promoting the conversion of Gli3 into a repressor, which keeps Hh signalling off. Activation of Hh signalling antagonises the Itch-dependent polyubiquitylation of SuFu. Notably, different SuFu mutations occurring in medulloblastoma patients are insensitive to Itch activity, thus leading to deregulated Hh signalling and enhancing medulloblastoma cell growth. Our findings uncover mechanisms controlling the tumour suppressive functions of SuFu and reveal that their alterations are implicated in medulloblastoma tumorigenesis.


Assuntos
Proteínas Hedgehog/metabolismo , Meduloblastoma/metabolismo , Proteínas Repressoras/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , beta-Arrestina 2/metabolismo , Motivos de Aminoácidos , Animais , Carcinogênese , Feminino , Proteínas Hedgehog/genética , Humanos , Meduloblastoma/enzimologia , Meduloblastoma/genética , Meduloblastoma/patologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos NOD , Camundongos Knockout , Camundongos SCID , Proteínas Repressoras/química , Proteínas Repressoras/genética , Transdução de Sinais , Ubiquitina-Proteína Ligases/genética , Ubiquitinação , beta-Arrestina 2/genética
12.
Stem Cells ; 34(5): 1332-42, 2016 05.
Artigo em Inglês | MEDLINE | ID: mdl-26850087

RESUMO

Peribiliary glands (PBGs) are niches in the biliary tree and containing heterogeneous endodermal stem/progenitors cells that can differentiate, in vitro and in vivo, toward pancreatic islets. The aim of this study was to evaluate, in experimental and human diabetes, proliferation of cells in PBGs and differentiation of the biliary tree stem/progenitor cells (BTSCs) toward insulin-producing cells. Diabetes was generated in mice by intraperitoneal injection of a single dose of 200 mg/kg (N = 12) or 120 mg/kg (N = 12) of streptozotocin. Liver, pancreas, and extrahepatic biliary trees were en bloc dissected and examined. Cells in PBGs proliferated in experimental diabetes, and their proliferation was greatest in the PBGs of the hepatopancreatic ampulla, and inversely correlated with the pancreatic islet area. In rodents, the cell proliferation in PBGs was characterized by the expansion of Sox9-positive stem/progenitor cells that gave rise to insulin-producing cells. Insulin-producing cells were located mostly in PBGs in the portion of the biliary tree closest to the duodenum, and their appearance was associated with upregulation of MafA and Gli1 gene expression. In patients with type 2 diabetes, PBGs at the level of the hepatopancreatic ampulla contained cells showing signs of proliferation and pancreatic fate commitment. In vitro, high glucose concentrations induced the differentiation of human BTSCs cultures toward pancreatic beta cell fates. The cells in PBGs respond to diabetes with proliferation and differentiation towards insulin-producing cells indicating that PBG niches may rescue pancreatic islet impairment in diabetes. These findings offer important implications for the pathophysiology and complications of this disease. Stem Cells 2016;34:1332-1342.


Assuntos
Sistema Biliar/citologia , Diabetes Mellitus Experimental/patologia , Diabetes Mellitus Tipo 2/patologia , Células Secretoras de Insulina/citologia , Nicho de Células-Tronco , Células-Tronco/citologia , Animais , Compartimento Celular , Diferenciação Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Glucose/farmacologia , Humanos , Insulina/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Estreptozocina
13.
PLoS One ; 10(8): e0134677, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26252949

RESUMO

Generation of ß-pancreatic cells represents a major goal in research. The aim of this study was to explore a protein-based strategy to induce differentiation of human biliary tree stem cells (hBTSCs) towards ß-pancreatic cells. A plasmid containing the sequence of the human pancreatic and duodenal homeobox 1 (PDX1) has been expressed in E. coli. Epithelial-Cell-Adhesion-Molecule positive hBTSCs or mature human hepatocyte cell line, HepG2, were grown in medium to which Pdx1 peptide was added. Differentiation toward pancreatic islet cells were evaluated by the expression of the ß-cell transcription factors, Pdx1 and musculoapo-neurotic fibrosarcoma oncogene homolog A, and of the pancreatic hormones, insulin, glucagon, and somatostatin, investigated by real time polymerase chain reaction, western blot, light microscopy and immunofluorescence. C-peptide secretion in response to high glucose was also measured. Results indicated how purified Pdx1 protein corresponding to the primary structure of the human Pdx1 by mass spectroscopy was efficiently produced in bacteria, and transduced into hBTSCs. Pdx1 exposure triggered the expression of both intermediate and mature stage ß-cell differentiation markers only in hBTSCs but not in HepG2 cell line. Furthermore, hBTSCs exposed to Pdx1 showed up-regulation of insulin, glucagon and somatostatin genes and formation of 3-dimensional islet-like structures intensely positive for insulin and glucagon. Finally, Pdx1-induced islet-like structures exhibited glucose-regulated C-peptide secretion. In conclusion, the human Pdx1 is highly effective in triggering hBTSC differentiation toward functional ß-pancreatic cells.


Assuntos
Células-Tronco Adultas/citologia , Sistema Biliar/citologia , Diferenciação Celular/efeitos dos fármacos , Proteínas de Homeodomínio/farmacologia , Células Secretoras de Insulina/citologia , Proteínas Recombinantes/farmacologia , Transativadores/farmacologia , Células-Tronco Adultas/efeitos dos fármacos , Células-Tronco Adultas/metabolismo , Forma Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Cromatografia , Endocitose/efeitos dos fármacos , Células Hep G2 , Humanos , Células Secretoras de Insulina/efeitos dos fármacos , Células Secretoras de Insulina/metabolismo
14.
PLoS One ; 9(5): e96037, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24787739

RESUMO

EGR1 is an immediate early gene with a wide range of activities as transcription factor, spanning from regulation of cell growth to differentiation. Numerous studies show that EGR1 either promotes the proliferation of stimulated cells or suppresses the tumorigenic growth of transformed cells. Upon interaction with ARF, EGR1 is sumoylated and acquires the ability to bind to specific targets such as PTEN and in turn to regulate cell growth. ARF is mainly localized to the periphery of nucleolus where is able to negatively regulate ribosome biogenesis. Since EGR1 colocalizes with ARF under IGF-1 stimulation we asked the question of whether EGR1 also relocate to the nucleolus to interact with ARF. Here we show that EGR1 colocalizes with nucleolar markers such as fibrillarin and B23 in the presence of ARF. Western analysis of nucleolar extracts from HeLa cells was used to confirm the presence of EGR1 in the nucleolus mainly as the 100 kDa sumoylated form. We also show that the level of the ribosomal RNA precursor 47S is inversely correlated to the level of EGR1 transcripts. The EGR1 iseffective to regulate the synthesis of the 47S rRNA precursor. Then we demonstrated that EGR1 binds to the Upstream Binding Factor (UBF) leading us to hypothesize that the regulating activity of EGR1 is mediated by its interaction within the transcriptional complex of RNA polymerase I. These results confirm the presence of EGR1 in the nucleolus and point to a role for EGR1 in the control of nucleolar metabolism.


Assuntos
Nucléolo Celular/genética , Nucléolo Celular/metabolismo , Proteína 1 de Resposta de Crescimento Precoce/metabolismo , Regulação da Expressão Gênica , Precursores de RNA/genética , RNA Ribossômico/genética , Transcrição Gênica , Animais , Biomarcadores/metabolismo , Linhagem Celular , Nucléolo Celular/ultraestrutura , Proteína 1 de Resposta de Crescimento Precoce/química , Células HeLa , Humanos , Camundongos , Proteínas Pol1 do Complexo de Iniciação de Transcrição/metabolismo , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , RNA Polimerase I/metabolismo
15.
Neoplasia ; 13(4): 374-85, 2011 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-21472142

RESUMO

Medulloblastoma is the most common pediatric malignant brain tumor, arising from aberrant cerebellar precursors' development, a process mainly controlled by Hedgehog (Hh) signaling pathway. Histone deacetylase HDAC1 has been recently shown to modulate Hh signaling, deacetylating its effectors Gli1/2 and enhancing their transcriptional activity. Therefore, HDAC may represent a potential therapeutic target for Hh-dependent tumors, but still little information is available on the physiological mechanisms of HDAC regulation. The putative tumor suppressor REN(KCTD11) acts through ubiquitination-dependent degradation of HDAC1, thereby affecting Hh activity and medulloblastoma growth. We identify and characterize here two REN(KCTD11) homologues, defining a new family of proteins named KCASH, as "KCTD containing, Cullin3 adaptor, suppressor of Hedgehog." Indeed, the novel genes (KCASH2(KCTD21) and KCASH3(KCTD6)) share with REN(KCTD11) a number of features, such as a BTB domain required for the formation of a Cullin3 ubiquitin ligase complex and HDAC1 ubiquitination and degradation capability, suppressing the acetylation-dependent Hh/Gli signaling. Expression of KCASH2 and -3 is observed in cerebellum, whereas epigenetic silencing and allelic deletion are observed in human medulloblastoma. Rescuing KCASHs expression reduces the Hedgehog-dependent medulloblastoma growth, suggesting that loss of members of this novel family of native HDAC inhibitors is crucial in sustaining Hh pathway-mediated tumorigenesis. Accordingly, they might represent a promising class of endogenous "agents" through which this pathway may be targeted.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/fisiologia , Neoplasias Cerebelares/genética , Proteínas Hedgehog/antagonistas & inibidores , Meduloblastoma/genética , Proteínas Adaptadoras de Transdução de Sinal/química , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Adulto , Idoso , Idoso de 80 Anos ou mais , Animais , Proteínas de Ciclo Celular , Células Cultivadas , Neoplasias Cerebelares/metabolismo , Neoplasias Cerebelares/patologia , Clonagem Molecular , Proteínas Culina/metabolismo , Feminino , Idade Gestacional , Proteínas Hedgehog/metabolismo , Inibidores de Histona Desacetilases/metabolismo , Histona Desacetilases/metabolismo , Humanos , Meduloblastoma/metabolismo , Meduloblastoma/patologia , Camundongos , Camundongos Endogâmicos C57BL , Pessoa de Meia-Idade , Modelos Biológicos , Canais de Potássio/química , Gravidez , Homologia de Sequência de Aminoácidos , Transferases , Adulto Jovem
16.
Neoplasia ; 10(1): 89-98, 2008 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-18231642

RESUMO

Medulloblastoma (MB) is the most common malignant brain tumor of childhood arising from deregulated cerebellar development. Sonic Hedgehog (Shh) pathway plays a critical role in cerebellar development and its aberrant expression has been identified in MB. Gene expression profiling of cerebella from 1- to 14-day-old mice unveiled a cluster of genes whose expression correlates with the levels of Hedgehog (HH) activity. From this cluster, we identified Insm1 and Nhlh1/NSCL1 as novel HH targets induced by Shh treatment in cultured cerebellar granule cell progenitors. Nhlh1 promoter was found to be bound and activated by Gli1 transcription factor. Remarkably, the expression of these genes is also upregulated in mouse and human HH-dependent MBs, suggesting that they may be either a part of the HH-induced tumorigenic process or a specific trait of HH-dependent tumor cells.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Neoplasias Cerebelares/genética , Cerebelo/crescimento & desenvolvimento , Proteínas de Ligação a DNA/genética , Regulação da Expressão Gênica no Desenvolvimento , Regulação Neoplásica da Expressão Gênica , Proteínas Hedgehog/metabolismo , Meduloblastoma/genética , Organogênese/genética , Fatores de Transcrição/genética , Animais , Sequência de Bases , Cerebelo/efeitos dos fármacos , Cerebelo/metabolismo , Expressão Gênica/efeitos dos fármacos , Proteínas Hedgehog/farmacologia , Humanos , Camundongos , Dados de Sequência Molecular , Proteínas Oncogênicas/metabolismo , Proteínas Repressoras , Transativadores/metabolismo , Células Tumorais Cultivadas , Proteína GLI1 em Dedos de Zinco
17.
Nat Cell Biol ; 8(12): 1415-23, 2006 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-17115028

RESUMO

The developmental protein Numb is a major determinant of binary cell fates. It is also required for the differentiation of cerebellar granule cell progenitors (GCPs) at a stage of development responsive to the morphogenic glycoprotein Hedehog. Hedgehog signalling is crucial for the physiological maintenance and self-renewal of neural stem cells and its deregulation is responsible for their progression towards tumorigenesis. The mechanisms that inhibit this pathway during the differentiation stage are poorly understood. Here, we identify Numb as a Hedgehog-pathway inhibitor that is downregulated in early GCPs and GCP-derived cancer cells. We demonstrate that the Hedgehog transcription factor Gli1 is targeted by Numb for Itch-dependent ubiquitination, which suppresses Hedgehog signals, thus arresting growth and promoting cell differentiation. This novel Numb-dependent regulatory loop may limit the extent and duration of Hedgehog signalling during neural-progenitor differentiation, and its subversion may be a relevant event in brain tumorigenesis.


Assuntos
Proteínas Hedgehog/metabolismo , Fatores de Transcrição Kruppel-Like/metabolismo , Proteínas de Membrana/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Proteínas Repressoras/metabolismo , Fatores de Transcrição/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitinas/metabolismo , Animais , Neoplasias Cerebelares/genética , Neoplasias Cerebelares/patologia , Cerebelo/citologia , Cerebelo/patologia , Regulação para Baixo , Regulação Neoplásica da Expressão Gênica , Humanos , Fatores de Transcrição Kruppel-Like/genética , Meduloblastoma/genética , Camundongos , Processamento de Proteína Pós-Traducional , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Transdução de Sinais , Células-Tronco/citologia , Fatores de Transcrição/genética , Proteína GLI1 em Dedos de Zinco
18.
J Neurosci ; 25(36): 8338-46, 2005 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-16148242

RESUMO

During the early development of the cerebellum, a burst of granule cell progenitor (GCP) proliferation occurs in the outer external granule layer (EGL), which is sustained mainly by Purkinje cell-derived Sonic Hedgehog (Shh). Shh response is interrupted once GCPs move into the inner EGL, where granule progenitors withdraw proliferation and start differentiating and migrating toward the internal granule layer (IGL). Failure to interrupt Shh signals results in uncoordinated proliferation and differentiation of GCPs and eventually leads to malignancy (i.e., medulloblastoma). The Shh inhibitory mechanisms that are responsible for GCP growth arrest and differentiation remain unclear. Here we report that REN, a putative tumor suppressor frequently deleted in human medulloblastoma, is expressed to a higher extent in nonproliferating inner EGL and IGL granule cells than in highly proliferating outer EGL cells. Accordingly, upregulated REN expression occurs along GCP differentiation in vitro, and, in turn, REN overexpression promotes growth arrest and increases the proportion of p27/Kip1+ GCPs. REN also impairs both Gli2-dependent gene transcription and Shh-enhanced expression of the target Gli1 mRNA, thus antagonizing the Shh-induced effects on the proliferation and differentiation of cultured GCPs. Conversely, REN functional knock-down impairs Hedgehog antagonism and differentiation and sustains the proliferation of GCPs. Finally, REN enhances caspase-3 activation and terminal deoxynucleotidyl transferase-mediated biotinylated UTP nick end labeling apoptotic GCP numbers; therefore, the pattern of REN expression, its activity, and its antagonism on the Hedgehog pathway suggest that this gene may represent a restraint of Shh signaling at the outer to inner EGL GCP transitions. Medulloblastoma-associated REN loss of function might withdraw such a limiting signal for immature cell expansion, thus favoring tumorigenesis.


Assuntos
Apoptose/fisiologia , Divisão Celular/fisiologia , Cerebelo/fisiologia , Bulbo/fisiologia , Proteínas do Tecido Nervoso/genética , Transativadores/antagonistas & inibidores , Animais , Caspase 3 , Caspases/metabolismo , Técnicas de Cultura de Células , Proteínas de Ciclo Celular , Diferenciação Celular/fisiologia , Inibidor de Quinase Dependente de Ciclina p27/genética , Ativação Enzimática , Regulação da Expressão Gênica/fisiologia , Proteínas Hedgehog , Camundongos , Proteínas Recombinantes/metabolismo , Transferases
19.
Proc Natl Acad Sci U S A ; 101(29): 10833-8, 2004 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-15249678

RESUMO

Hedgehog signaling is suggested to be a major oncogenic pathway in medulloblastoma, which arises from aberrant development of cerebellar granule progenitors. Allelic loss of chromosome 17p has also been described as the most frequent genetic defect in this human neoplasia. This observation raises the question of a possible interplay between 17p deletion and the Hedgehog tumorigenic pathway. Here, we identify the human orthologue of mouse REN(KCTD11), previously reported to be expressed in differentiating and low proliferating neuroblasts. Human REN(KCTD11) maps to 17p13.2 and displays allelic deletion as well as significantly reduced expression in medulloblastoma. REN(KCTD11) inhibits medulloblastoma cell proliferation and colony formation in vitro and suppresses xenograft tumor growth in vivo. REN(KCTD11) seems to inhibit medulloblastoma growth by negatively regulating the Hedgehog pathway because it antagonizes the Gli-mediated transactivation of Hedgehog target genes, by affecting Gli1 nuclear transfer, and its growth inhibitory activity is impaired by Gli1 inactivation. Therefore, we identify REN(KCTD11) as a suppressor of Hedgehog signaling and suggest that its inactivation might lead to a deregulation of the tumor-promoting Hedgehog pathway in medulloblastoma.


Assuntos
Neoplasias Cerebelares/genética , Meduloblastoma/genética , Proteínas do Tecido Nervoso/metabolismo , Canais de Potássio/metabolismo , Transdução de Sinais/fisiologia , Transativadores/metabolismo , Alelos , Animais , Proteínas de Ciclo Celular , Neoplasias Cerebelares/metabolismo , Neoplasias Cerebelares/patologia , Cromossomos Humanos Par 17 , Deleção de Genes , Regulação Neoplásica da Expressão Gênica , Proteínas Hedgehog , Humanos , Meduloblastoma/metabolismo , Meduloblastoma/patologia , Camundongos , Proteínas do Tecido Nervoso/genética , Proteínas Oncogênicas/genética , Proteínas Oncogênicas/metabolismo , Canais de Potássio/genética , Transativadores/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Transferases , Transplante Heterólogo , Proteína GLI1 em Dedos de Zinco
20.
J Cell Biol ; 158(4): 731-40, 2002 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-12186855

RESUMO

Expansion and fate choice of pluripotent stem cells along the neuroectodermal lineage is regulated by a number of signals, including EGF, retinoic acid, and NGF, which also control the proliferation and differentiation of central nervous system (CNS) and peripheral nervous system (PNS) neural progenitor cells. We report here the identification of a novel gene, REN, upregulated by neurogenic signals (retinoic acid, EGF, and NGF) in pluripotent embryonal stem (ES) cells and neural progenitor cell lines in association with neurotypic differentiation. Consistent with a role in neural promotion, REN overexpression induced neuronal differentiation as well as growth arrest and p27Kip1 expression in CNS and PNS neural progenitor cell lines, and its inhibition impaired retinoic acid induction of neurogenin-1 and NeuroD expression. REN expression is developmentally regulated, initially detected in the neural fold epithelium of the mouse embryo during gastrulation, and subsequently throughout the ventral neural tube, the outer layer of the ventricular encephalic neuroepithelium and in neural crest derivatives including dorsal root ganglia. We propose that REN represents a novel component of the neurogenic signaling cascade induced by retinoic acid, EGF, and NGF, and is both a marker and a regulator of neuronal differentiation.


Assuntos
Diferenciação Celular/fisiologia , Regulação da Expressão Gênica no Desenvolvimento , Proteínas do Tecido Nervoso/fisiologia , Neurônios/citologia , Fatores de Transcrição , Sequência de Aminoácidos , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos , Biomarcadores , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Divisão Celular/fisiologia , Células Cultivadas , Clonagem Molecular , Inibidor de Quinase Dependente de Ciclina p27 , DNA Complementar , Fator de Crescimento Epidérmico/farmacologia , Regulação da Expressão Gênica no Desenvolvimento/efeitos dos fármacos , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Camundongos , Dados de Sequência Molecular , Fator de Crescimento Neural/farmacologia , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Células-Tronco/metabolismo , Transferases , Tretinoína/farmacologia , Proteínas Supressoras de Tumor/genética , Proteínas Supressoras de Tumor/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...